Studies on the Formation of Complex Compounds between Transition Metal Nitrates and Uranyl Nitrate

The System: $Ni(NO_3)_2-UO_2(NO_3)_2-H_2O$ (Conductance, pH, Spectrophotometry and Refractive-index)

By S. S. GUPTA and S. D. MARWAH (Miss)

With 3 Figures

Abstract

Experimental evidence from the values of conductance, pH, spectrophotometry and Refractive Index measurements with uranyl nitrate-Nickel nitrate-water system indicate two definite complex compounds in solution:

$$Ni(NO_3)_2 - UO_2(NO_3)_2$$
(1)

$$3 \text{ Ni}(\text{NO}_3)_2 - \text{UO}_2(\text{NO}_3).$$
 (2)

A set of twenty two mixed solutions was prepared by following NAYAR and PANDE'S monovariation method. In all solutions the concentration of uranyl nitrate was kept constant, (i. e. M/100), while that of nickel nitrate varied systematically from 0.0 M to 0.042 M. The physico-chemical properties, namely, conductivity, pH, Spectrophotometry, refractiveindex, were used for the investigation of complex-compounds, in the above system. When these values were plotted against the varying concentrations of nickel nitrate two breaks were obtained in the regular curves at concentrations corresponding to the compounds having the above formulae. The results obtained by all these physico-chemical properties are in excellent agreement leading to the same conclusions.

Introduction

In our previous communications we have reported that uranyl ion behaves as a compound metal and forms complex-compounds, alkali metals, alkaline earth metals, silver, thallium, mercury cadmium and lead. (R. J. MEYER and F. WENDEL²), A. COLANI³), A. SACHS⁴) and E. RIMBACH⁵)).

- ²) R. J. MEYER and F. WENDEL, Ber. dtsch. chem. Ges. 36, 4055 (1903).
- ³) A. COLANI, Compt. rend. 195, 1475 (1927).
- ⁴) A. SACHS, Z. Kristallogr. 38, 498 (1903).
- ⁵) E. RIMBACH, Ber. dtsch. chem. Ges. 37, 46 K (1904).
- 15 J. prakt. Chem. 4. Reihe, Bd. 26.

¹) M. R. NAYAR and C. S. PANDE, Proc. Ind. Acad. Sci. 27 A, 286 (1948).

A. LANCEIN⁶) reported unstable complex salts with nitrates of Cd, Rh and nickel having the following compositions:

- (a) $Cd[UO_2(NO_3)_4] \cdot 30 H_2O$
- (b) $Rh[UO_2(NO_3)_5] \cdot 10 H_2O$
- (c) $3 \text{ UO}_2(\text{NO}_3)_2 \cdot 10 \text{ Ni}(\text{NO}_3)_2$ as greenish yellow needles.

The survey of literature also reveals that the system, Nickel nitrate-Uranyl nitrate- water, has not been investigated thoroughly. Therefore it was thought to be desirable to examine the above system thoroughly to investigate the existance and the number of complex-compounds by applying the monovariation method of NAYAB and PANDE⁷). The physico-chemical properties used for the investigation were conductance, pH, spectrophotometry and refractive-index. The present communication deals with our observations based on the values of conductance, pH, Spectrophotometry and refractive-index. The results are in excellent agreement and lead to the same conclusion.

Experimental

Nickel nitrate and uranyl nitrate of A. R./B. D. H. quality were used for the preparation of stock solutions. The purity of these salts was estimated before use by the usual standard methods. The stock solutions of Uranyl nitrate and nickel nitrate (0.1 M) were prepared in conductivity water and stored in thoroughly cleaned and steamed glass stoppered Jena glass bottles 5 c.c. of uranyl nitrate (0.1 M) were pipetted out into 50 c.c. standard flasks to which the requisite volume of uranyl nitrate solution (0.1 M) was added and the mixture made upto the mark, i.e. 50 c.c. by addition of conductivity water. In this way a series of 22 solutions was made in which the concentration of uranyl nitrate remained the same (0.01 M), while that of nickel nitrate varied systematically from (0.00 M) to (0.042 M). The solutions were stored in thoroughly cleaned glass-bottles. The composition of these solutions is shown in Table 1.

Conductance

Conductance measurements were made by the conductivity assembly. Electronic Magic-eye (Phillips Model G. M. 4249). A pyrex-glass conductivity cell with platinum electrodes was used in conductivity measurements. The cell was platinized and washed by following all the details given in Findlay: Practical Physical Chemistry. The cell was rinsed several times

⁶) A. LANCEIN, Chem. Zbl. 1, 208 (1912).

Soln. No.	Total volume of the soln. C.C.	C.C. of $UO_2(NO_3)_2$ M/10 added	Concentra- tion of the $UO_2(NO_3)_2$ soln. M	C.C. of Ni(NO ₃) ₂ M/10 added	Concentra- tion of Ni(NO ₃) ₂ soln. M	Ratio of the constituents	
1	50	5	0.01	0	0.000	5/0	
2	50	5	0.01	1	0.002	5/1	
3	50	5	0.01	2	0.004	5/2	
4	50	5	0.01	3	0.006	5/3	
5	50	5	0.01	4	0.008	5/4	
6	50	5	0.01	5	0.010	5/5 or 1:1	
7	50	5	0.01	6	0.012	5/6	
8	50	5	0.01	7	0.014	5/7	
9	50	5	0.01	8	0.016	5/8	
10	50	5	0.01	9	0.018	5/9	
11	50	5	0.01	10	0,020	5/10 or 1:2	
12	50	5	0.01	11	0.022	5/11	
13	50	5	0.01	12	0.024	5/12	
14	50	5	0.01	13	0.026	5/13	
15	50	5	0.01	14	0.028	5/14	
16	50	5	0.01	15	0.030	5/15 or 1:3	
17	50	5	0.01	16	0.032	5/16	
18	50	5	0.01	17	0.034	5/17	
19	50	5	0.01	18	0.036	5/18	
20	50	5	0.01	19	0.038	5/19	
21	50	5	0.01	20	0.040	5/20 or 1:4	
22	50	5	0.01	21	0.042	5/21	

Table 1 The System: $Ni(NO_3)_2$ - $UO_2(NO_3)_2$ - H_2O Compositions of the solution

with the solution used. At least three readings were taken for each solution. The temperature of the thermostat was maintained at 35 °C. Each solution was placed in the cell and kept in the thermostat for at least half an hour before observations were recorded. The values of resistance and conductance are given in table 2.

pH Measurements

The pH measurements of the solutions were made by using a Phillips G. M. 4494/Model using a glass electrode, at 35 °C. The values are recorded in table 3.

Spectrophotometry

Measurements of per cent transmission, per cent absorption and optica density were made by using a Unicam/Spectrophotometer 500 cycles. The 15*

Soln. No.	C.C. of Ni(NO ₃) ₂ M/10 added to 5 c.c. of UO ₂ (NO ₃) ₂	Resistance in Ohms	Conductance $\times 10^4$ Mhos
1	0	635	15.75
2	1	530	18.87
3	2	460	21.74
4	3	380	26.31
5	4	350	28.57
6	5	350	28.57
7	6	290	34.48
8	7	280	. 35.72
9	8	270	37.03
10	9	245	40.82
11	10	225	44.44
12	11	220	45.45
13	12	210	47.62
14	13	175	57.15
15	14	170	58.80
16	15	175	57.14
17	16	170	58.80
18	17	165	60.60
19	18	140	71.40
20	19	130	76.90
21	20	120	83.30
22	21	115	86.90

Table 2 The System: Ni(NO₃)₂-UO₂(NO₃)₂-H₂O

Cell Constant 1.5732

Temp. = 35 ± 0.05 °C

solutions were maintained at 35 °C by placing in a thermostat maintained at 35 °C. The values of spectrophotometric observations are shown in table 4 (before recording the observations the adjustment was made with a blank of solvent used in the preparation of solutions).

Refractive-Index

The refractive-index measurements were made by an Abbe's Refractometer-model No. 344223. The observations are recorded in the table 3.

Observations and Conclusion

On plotting the values of resistance, conductance pH spectrophotometry and refractive index against the varying concentration of nickel nitrate added to a fixed volume of uranyl nitrate, the curves shown in the figures 1, 2 and 3, were obtained. In case of all the curves two definite breaks were obtained at

Model No. 11808 Temp	$= 35 \pm 0.1$ °C	Wavelength 450 mµ	
C. C. of Ni $(NO_3)_2$ 0.1 M added to 5 c. c. of $UO_2(NO_3)_2$ M/10	% Transmission	% Absorption	Optical Density
0 c.c.	92.60	7.4	0.033
1 e.c.	90.4	9.6	0.044
2 c.c.	90.0	10.0	0.045
3 c.c.	89.7	10.3	0.047
4 c.c.	89.3	10.7	0.048
5 c.c.	89.7	10.3	0.047
6 c.c.	89.4	10.6	0.0478
7 c.c.	89.0	11.0	0.051
8 c.c.	88.7	11.3	0.052
9 c.c.	88.0	11.9	0.055
10 c.c.	87.98	12.02	0.0555
11 e.c.	87.80	12.20	0.0565
12 c.c.	86.20	13.80	0.0648
13 c.c.	86.90	13.10	0.0615
14 c.c.	86.70	13.30	0.0622
15 c.c.	87.8	12.20	0.0565
16 c.c.	86.50	13.50	0.063
17 c.c.	86.06	13.94	0.0652
18 c.c.	85.98	14.02	0.06525
19 c.c.	85.60	14.40	0.0675
20 c.c.	85.02	14.98	0.0705
21 c.c.	84.70	15.30	0.0720
	Model No. 11808 Temp C. C. of Ni(NO ₃) ₂ 0.1 M added to 5 c. c. of uO ₂ (NO ₃) ₂ M/10 0 c.c. 1 c.c. 2 c.c. 3 c.c. 4 c.c. 5 c.c. 6 c.c. 7 c.c. 8 c.e. 9 c.c. 10 c.c. 11 c.c. 12 c.c. 13 c.c. 14 c.c. 15 c.c. 16 c.c. 17 c.c. 18 c.c. 19 c.c. 20 c.c. 21 c.c.	Model No. 11808Temp. = $35 \pm 0.1^{\circ}C$ C. C. of Ni(NO ₃) ₂ 0.1 M added to 5 c. e. of $UO_2(NO_3)_2$ M/10% Transmission0 c.c.92.601 c.c.90.42 c.c.90.03 c.c.89.74 c.c.89.35 c.c.89.76 c.e.89.47 c.c.89.08 c.e.88.79 c.c.88.010 c.c.87.9811 c.e.87.8012 c.e.86.2013 c.e.86.9014 c.c.86.7015 c.c.87.816 c.e.86.9014 c.e.86.7015 c.e.85.6017 c.e.86.5017 c.e.86.5017 c.e.85.6020 c.e.85.0221 c.e.84.70	Model No. 11808Temp. = $35 \pm 0.1^{\circ}C$ Wavelength 4C. C. of Ni(NO ₃) ₂ 0.1 M added to 5 c. c. of UO ₂ (NO ₃) ₂ M/10% Transmission% Absorption0 c.c.92.607.41 c.c.90.49.62 c.c.90.010.03 c.c.89.710.34 c.c.89.310.75 c.c.89.710.36 c.c.89.710.36 c.c.89.410.67 c.c.89.011.08 c.c.88.711.39 c.c.88.011.910 c.c.87.9812.0211 c.c.87.8012.2012 c.c.86.2013.8013 c.c.86.7013.3015 c.c.87.812.2016 c.c.86.5013.5017 c.c.86.0613.9418 c.c.85.9814.0219 c.c.85.6014.4020 c.c.85.0214.9821 c.c.84.7015.30

Table 3 The System: Ni(NO₃)₂-UO₂(NO₃)₂-H₂O 11808 Temp. = 35 ± 0.1 °C Wavelength 450 m

Property Property	pH : Refractive Index	Pye pH meter Model No. 11083 Abbe's Refractometer No. 344223		
Soln. No.	C.C. of Ni(NO) ₂ M/10 added to 5 c.c. of UO ₂ (NO ₃) ₂ M/10 in c.c.	pH measurements	Refractive Index	
1	0.0	3.16	1.336	
2	1.0	3.05	1.339	
3	2.0	3.05	1.340	
4	3.0	3.10	1.3395	
5	4.0	3.15	1.340	
6	5.0	3.00	1.341	
7	6.0	3.15	1.340	
8	7.0	3.15	1.340	
9	8.0	3.15	1.340	
10	9.0	3.20	1.340	
11	10.0	3.20	1.340	
12	11.0	3.20	1.340	
13	12.0	3.20	1.340	
14	13.0	3.20	1.340	
15	14.0	3.20	1.340	
16	15.0	3.15	1.342	
17	16.0	3.15	1.340	
18	17.0	3.20	1.341	
19	18.0	3.15	1.341	
20	19.0	3.20	1.341	
21	20.0	3.20	1.341	
22	21.0	3.20	1.341	
I	3,30-	Refractive Jndex	1	

Table 4 The System: Ni(NO₃)₂-UO₂(NO₃)₂-H₂O

230

concentrations corresponding to 5 c.c. and 15 c.c. of nickel nitrate. The molecular ratios of uranyl nitrate at these points are 1:1 and 1:3 respectively. These correspond to the compounds of the formulae:

$$Ni(NO_3)_2 UO_2(NO_3)_2$$
(1)

and

$$3 \operatorname{Ni}(\operatorname{NO}_3)_2 \cdot \operatorname{UO}_2(\operatorname{NO}_3)_2.$$
⁽²⁾

For the present we have assumed that the kinks occur at the stoichiometric proportions corresponding to the two compounds existing in solutions and have concluded that the two compounds uranyl nitrate and nickel nitrate form the compounds corresponding to the formulae given above. An attempt is being made to crystallize out these complexes, if possible in solid state and to study their properties in detail. The existence of these comple-

xes become more definite when such widely differing properties like conductance, pH, Spectrophotometry and Refractive-index measurements yield the same observations leading to the same conclusions.

Our sincerest thanks are due to Professor Dr. S. N. SHUKLA, Professor and Head of the Chemistry Department, Lucknow University, Lucknow and Dr. KRISHNA MEHAN, Director, Directorate of Geology and Mining, U. P. for kind encouragement and providing all sorts of laboratory facilities.

Lucknow (India), Inorganic Chemical Laboratories, Lucknow University.

Bei der Redaktion eingegangen am 16. Dezember 1963.

Verantwortlich

für die Schriftleitung: Prof. Dr.-Ing. Dr. h. c. E. Leibnitz, Leipzig O 5, Permoserstraße 15; für den Anzeigenteil: DEWAG-Werbung Leipzig, Leipzig C 1, Friedrich-Ebert-Str. 110, Ruf 7851. Z. Z. gilt Anzeigenpreisliste 4; Verlag: Johann Ambrosius Barth, Leipzig C 1, Salomonstraße 18B; Fernut 27681 und 27682. Veröffentlicht unter der Lizenz-Nr. 1895 des Presseamtes beim Vorsitzenden des Ministerrates der DDR

Printed in Germany

Druck: Paul Dünnhaupt, Köthen (IV/5/1) L 228/64